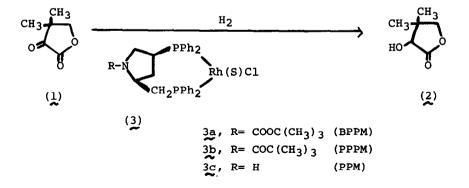
Tetrahedron Letters No. 50, pp 4431 - 4432, 1977. Pergamon Press. Printed in Great Britain.

CATALYTIC ASYMMETRIC SYNTHESES OF R(-) - AND S(+) - PANTOLACTONE¹⁾

Kazuo Achiwa*

Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan


Tetsuo Kogure and Iwao Ojima*

Sagami Chemical Research Center, Nishi-Ohnuma 4-4-1, Sagamihara, Kanagawa 229, Japan

(Received in Japan 19 September 1977; received in UK for publication 27 October 1977)

R(-)-Pantolactone(2) is an important intermediate in the syntheses of pantheine and Coenzyme A^{2} . The chiral synthesis of this simple α -hydroxylactone has been realized already via both chemical resolution³ and biochemical reactions 4), as the key steps, but both methods usually included a troublesome isolation procedure due to its high solubility in water.

We wish to describe here a simple and efficient chiral synthesis of R(-)pantolactone(2) by asymmetric hydrogenation of α -keto- β , β -dimethyl- γ -butyrolactone(1)⁵) as an application of the successful hydrogenation of the α -ketoesters catalyzed by BPPM-rhodium complex⁶), and also from our continued interest in the effects of the modified N-substituents of BPPM on the asymmetric hydrogenation of the conformationally fixed cyclic keto ester, since the modification of the N-substituent of BPPM gave rise to a dramatic effect on the optical yields of N-benzyloxycarbonylalanine and N-acetylsalsolidine in their asymmetric syntheses⁷.

In a typical experiment, the asymmetric hydrogenation of 1 (5 mmole) was run in benzene (3 ml) under an initial hydrogen pressure of 50 atm at 50°C for 45 h in the presence of the rhodium catalyst which was synthesized in situ from PPPM (6×10^{-2} mmole) and [Rh(1,5-hexadiene)Cl]₂ (2.5 \times 10^{-2}mmole). Then, the reaction mixture (100% conversion yield by vpc analysis) was simply distilled to give R-(-)-pantolactone, bp 103°C (6 mmHg), $[\alpha]_{D}^{20}$ -30.0° (c 3.79, H₂O)(59.2% optical yield) in a 93% isolated yield.

Similarly, the asymmetric hydrogenations of 1 with BPPM-, PPPM- or PPMrhodium complex in benzene or ethanol as a solvent were carried out.

Table	I.	Asymmetric hydrogenation of α -keto- β , β	-
		dimethyl-y-butyrolactone ^{a)}	

Chiral rea (R)	agent So	olvent Ti (h		onvers: (%)	iofi ⁾ Opt.	y.(confç)
соос (сн3) з	3 (BPPM)	Benzene	45	100	54.6	(R)
соос (сн3) 3	(BPPM)	Ethanol	95	100	32.1	(R)
сос (Сн3) 3	(PPPM)	Benzene	45	100	59.2	(R)
COC (CH ₃)	(PPPM)	Ethanol	95	100	35.9	(R)
н	(PPM)	Benzene	45	100	15.4	(S)
H	(PPM)	Ethanol	95	100	8.5	(S)

a) All hydrogenations were carried out with 5 mmol of substrate, 0.025 mmol of [Rh(1,5-hexadiene)Cl]2 and 0.06 mmol of bisphosphine in 3 ml of solvent at 50°C under an initial hydrogen pressure of 50 atm. b) By vpc analysis. c) Calculated on the basis of the reported value for optically pure R-2; $[\alpha]_D^5$ -50.7°(c 2.05, H₂O), ref. 3.

Table I shows clearly that BPPM- and PPPM-Rh complexes gave R(-)-pantolactone in benzene and ethanol, whereas PPM-Rh complex gave the S product in benzene and ethanol although the optical yield decreased. This fact may suggest that the N-substituents of PPM play an important role in affecting the optical yield of the product.

Further active investigations along this line are under way.

REFERENCES AND NOTES

- 1) Asymmetric Reactions Catalyzed by Transition Metal Complexes. VI.
- See, for example, "The Merck Index" 9th Edition, M.Windholz, Ed., Merck & Co., Inc., Rahway, N.J. 1976, pp 2435, 6811 and references cited therein.
- 3) E.T.Stiller, S.A.Harris, J.Finkelstein, J.C.Keresztesy and K.Folkers, J.Am. Chem.Soc., 62, 1785 (1940) and references cited therein.
- 4) R.P.Lanzilota, D.G.Bradley and K.M.McDonald, Applied Microbiology, 27, 130 (1974).
- 5) R.Kuhn and T.Wieland, Ber., <u>75</u>, 121 (1942).
- 6) I.Ojima, T.Kogure and K.Achiwa, J.Chem.Soc., Chem.Commun. 428 (1977).
- 7)a)K.Achiwa, J.Am.Chem.Soc., <u>98</u>, 8265 (1976).
 b) K.Achiwa, Chemistry Lett., 777 (1977).
 c) K.Achiwa, Heterocycles, in press (1977).